注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

have a good time !!

mind act upon mind

 
 
 

日志

 
 

Box Plot: Display of Distribution  

2012-12-29 09:22:31|  分类: 统计spss等等 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

come from: http://www.physics.csbsju.edu/stats/box2.html

They are different, but not different enough to matter -- like the maple leaves off the tree in my yard, when all I want to do is rake them up.

Roald Hoffmann, 1981 Nobel Laureate in Chemistry 
from: The Same and Not the Same


"The Same and Not the Same" is a short, accurate description of most any set of data...a pile of maple leaves for example. Maple leaves have approximately the same size, but with some variation. Descriptive statistics are an attempt to use numbers to describe how data are the same and not the same. The box plot (a.k.a. box and whisker diagram) is a standardized way of displaying the distribution of data based on the five number summary: minimum, first quartile, median, third quartile, and maximum. In the simplest box plot the central rectangle spans the first quartile to the third quartile (the interquartile range or IQR). A segment inside the rectangle shows the median and "whiskers" above and below the box show the locations of the minimum and maximum.

Box Plot: Display of Distribution - movie6521 - have a good time !!

This simplest possible box plot displays the full range of variation (from min to max), the likely range of variation (the IQR), and a typical value (the median). Not uncommonly real datasets will display surprisingly high maximums or surprisingly low minimums called outliers. John Tukey has provided a precise definition for two types of outliers:

  • Outliers are either 3×IQR or more above the third quartile or 3×IQR or more below the first quartile.

  • Suspected outliers are are slightly more central versions of outliers: either 1.5×IQR or more above the third quartile or 1.5×IQR or more below the first quartile.
If either type of outlier is present the whisker on the appropriate side is taken to 1.5×IQR from the quartile (the "inner fence") rather than the max or min, and individual outlying data points are displayed as unfilled circles (for suspected outliers) or filled circles (for outliers). (The "outer fence" is 3×IQR from the quartile.)

Box Plot: Display of Distribution - movie6521 - have a good time !!

If the data happens to be normally distributed,

IQR = 1.35 σ

where σ is the population standard deviation.

Suspected outliers are not uncommon in large normally distributed datasets (say more than 100 data-points). Outliers are expected in normally distributed datasets with more than about 10,000 data-points. Here is an example of 1000 normally distributed data displayed as a box plot:

Box Plot: Display of Distribution - movie6521 - have a good time !!

Note that outliers are not necessarily "bad" data-points; indeed they may well be the most important, most information rich, part of the dataset. Under no circumstances should they be automatically removed from the dataset. Outliers may deserve special consideration: they may be the key to the phenomenon under study or the result of human blunders.

Example A

Consider two datasets:

A1={0.22, -0.87, -2.39, -1.79, 0.37, -1.54, 1.28, -0.31, -0.74, 1.72, 0.38, -0.17, -0.62, -1.10, 0.30, 0.15, 2.30, 0.19, -0.50, -0.09}

A2={-5.13, -2.19, -2.43, -3.83, 0.50, -3.25, 4.32, 1.63, 5.18, -0.43, 7.11, 4.87, -3.10, -5.81, 3.76, 6.31, 2.58, 0.07, 5.76, 3.50}

Notice that both datasets are approximately balanced around zero; evidently the mean in both cases is "near" zero. However there is substantially more variation in A2 which ranges approximately from -6 to 6 whereas A1 ranges approximately from -2? to 2?.

Below find box plots and the more traditional error bar plots (with 1-σ bars). Notice the difference in scales: since the box plot is displaying the full range of variation, the y-range must be expanded.

Box Plot: Display of Distribution - movie6521 - have a good time !! Box Plot: Display of Distribution - movie6521 - have a good time !!

Example B

B1={1.26, 0.34, 0.70, 1.75, 50.57, 1.55, 0.08, 0.42, 0.50, 3.20, 0.15, 0.49, 0.95, 0.24, 1.37, 0.17, 6.98, 0.10, 0.94, 0.38}

B2= {2.37, 2.16, 14.82, 1.73, 41.04, 0.23, 1.32, 2.91, 39.41, 0.11, 27.44, 4.51, 0.51, 4.50, 0.18, 14.68, 4.66, 1.30, 2.06, 1.19}

Notice that the datasets span much the same range of values (from about .1 to about 50) and that all the values are positive. Most of the B1 values are less than one whereas most of the B2 values are more than one. We can use a log scale to better display this large range of values:

Box Plot: Display of Distribution - movie6521 - have a good time !!

On the other hand, a straightforward plot of the sample means and population standard deviations, suggests negative values (which prevents use of a log-scale) and broad overlap between the two distributions. (A t-test would suggest B1 and B2 are not significantly different.)

Box Plot: Display of Distribution - movie6521 - have a good time !!

Example C

One case of particular concern --where a box plot can be deceptive-- is when the data are distributed into "two lumps" rather than the "one lump" cases we've considered so far.

A "bee swarm" plot shows that in this dataset there are lots of data near 10 and 15 but relatively few in between. See that a box plot would not give you any evidence of this.

Box Plot: Display of Distribution - movie6521 - have a good time !! Box Plot: Display of Distribution - movie6521 - have a good time !!

  评论这张
 
阅读(384)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017